
Adaptive Learning for Damage Classification
in Structural Health Monitoring

D. Chakraborty†, N. Kovvali†, J. J. Zhang†, A. Papandreou-Suppappola†, and A. Chattopadhyay‡

†School of Electrical, Computer and Energy Engineering, Arizona State University
‡School of Mechanical, Aerospace, Chemical and Materials Engineering, Arizona State University

Abstract—A key challenge in real-world structural health mon-
itoring (SHM) is diversity of damage phenomena and variability
in environmental and operational conditions. Conventional learn-
ing techniques, while adequate for moderately complex inference
tasks, can be limiting in highly complex and rapidly changing
environments, especially when insufficient data is available.
We present an adaptive learning methodology where stochastic
models continuously evolve with the time-varying environment
and Dirichlet process mixture models are utilized to self-adapt
to structure within the data. Coupled with appropriate physics-
based phenomenology, the approach provides an adaptive and
effective framework for online SHM. The proposed technique is
demonstrated for the detection of progressive fatigue damage in
a metallic structure under variable-amplitude loading.

I. INTRODUCTION

Structural health monitoring (SHM) is an important problem
encountered in many civil, mechanical, and aerospace appli-
cations. In the last few decades, several statistical learning
techniques [1] were used to address uncertainty in the dam-
age process, with the ultimate goal of identifying damage
in structures of interest. One of the key challenges in the
development of real-world damage detection and classification
systems is diversity of damage phenomena and variability in
environmental and operational conditions. Structural damage
appears in a multitude of forms, and information collected
via measured sensor data is often strongly influenced, for ex-
ample, by changes in temperature, geometry or configuration,
sensor characteristics, and material variability [2]. Conven-
tional learning methods, while adequate for characterizing the
underlying mechanism of damage nucleation and evolution,
are of limited use in a highly complex and rapidly changing
environment, especially when sufficient amount of data is not
available. The main problem is that, even though data may
be collected continuously, the stochastic modeling framework
remains static. For example, the crack monitoring module of
an aircraft wing would need to be adjusted depending on
whether the aircraft is maneuvering or is moving into a region
of drastically different weather, such as turbulence.

In this paper, we propose an adaptive learning based damage
classification methodology where the stochastic models are
allowed to continuously evolve from experience with the
time-varying environment. The adaptive learning framework is
based on the use of Dirichlet process (DP) mixture models [3]
to provide the modeling with the machinery needed to self-
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adapt to structure within the data. Essentially, the DP mix-
ture model provides for a growing, possibly infinite number
of mixture components, a finite number of which manifest
themselves within the given data. The appropriate number
of mixture components and mixture proportions, and the
mixture distribution parameters, are learned adaptively from
the data. The DP mixture model learning is performed using
Markov Chain Monte Carlo (MCMC) techniques [4]. The
adaptively identified components or classes can then be traced
to different types of damage within a structure or different
possible variations in the material or the environment for the
same type of damage. The damage state inference is performed
using a Bayesian filter that combines the adaptive data model
with a physics based progressive damage model [5]. The main
advantage of this approach is that no baseline training data
is required and signals can be classified on the fly to new
(previously unseen) damage classes, yielding an adaptive and
effective approach for online SHM.

The remainder of the paper is organized as follows. In
Section II, we discuss the underlying theoretical framework
of DP mixture modeling. In Section III, we describe in detail
the adaptive learning based damage classification algorithm.
We establish the relevance of adaptive learning for the online
SHM problem and examine the role of the physics-based
damage evolution model. In Section IV, we describe the
real experimental data used to demonstrate the utility of
the proposed approach, and present results demonstrating the
performance of the proposed approach for the classification
of progressive fatigue crack damage in a aluminum compact-
tension (CT) sample subjected to variable-amplitude loading.

II. DIRICHLET PROCESS MIXTURE MODELS

In this section, we briefly describe the analytical framework
of Dirichlet process mixture models used in the proposed
adaptive SHM method. For more details on these topics the
reader is referred to the literature [3], [4], [6]–[8].

A. Dirichlet Process Mixture Models

Consider a mixture model of the form

p(y|p,Θ∗, M) =

M∑
m=1

pm f(y|θ∗

m), (1)

where y denotes data, M is the number of mixture compo-
nents, p = {p1, . . . , pM} is a set of mixing proportions or
weights (which must be positive and sum to one), Θ∗ =
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{θ∗

1, . . . ,θ
∗

M} is a set of parameters, and f(y|θ∗

m) represents
a suitable probability distribution (with parameter θ

∗

m). Given
a data set Y = {y1, . . . ,yN} of size N , the modeling task
comprises learning the mixture size M , proportions p, and the
distribution parameters Θ∗.

If the optimum mixture size M is known, then classical
maximum-likelihood (ML) learning techniques can be applied
to estimate the parameters of interest [6], [7]. In particular,
the iterative expectation-maximization (EM) algorithm can be
used to locally maximize the data likelihood [6], [9], [10]. The
EM algorithm introduces auxiliary or hidden variables and
iterates between inferring the posterior distribution over the
hidden variables given a current parameter setting and com-
puting a new parameter estimate by maximizing the likelihood
using the learned statistics.

An alternative and much more flexible approach to mixture
modeling is provided by the Dirichlet process (DP) [3], [8],
[11]–[15]. The DP forms a nonparametric prior distribution for
mixture models with an unbounded number of components.
A DP, denoted by DP (α, G0), is parametrized by a positive
scalar innovation parameter α and a base distribution G0. Let
G be a distribution drawn from a DP, then

G ∼ DP (α, G0), (2)

where G0 is the expected value of G and α determines the
concentration of the prior for G about G0.

A key feature of the DP is that, with probability one, dis-
tributions drawn from a DP are discrete. This property can be
used to automatically determine the number of components in
a mixture model. Consider N random variables {θ1, . . . ,θN}
distributed according to G:

G ∼ DP (α, G0), (3a)

θn|G ∼ G, n = 1, . . . , N. (3b)

Since G is discrete, the variables {θ1, . . . ,θN} take on
coincident values with positive probability. In particular, by
integrating out the distribution G, the following Pólya urn
property can be shown for the conditional density function
of variable θn given all other variables (denoted Θ−n) [3],
[11]–[14]:

p(θn|Θ
−n, α, G0) =

1

α + N − 1

M∑
m=1

n−n
m δ(θ∗

m, θn)

+
α

α + N − 1
G0(θn), (4)

where δ is the Kronecker-delta function, {θ∗

1, . . . ,θ
∗

M} are
the distinct values taken by {θ1, . . . ,θN}, and n−n

m is the
number of variables in Θ−n equal to θ

∗

m. As a result, the
DP prior entails that each variable θn either assumes an
existing value θ

∗

m with probability n−n
m /(α + N − 1) or is

drawn fresh from G0 with probability α/(α + N − 1). The
innovation parameter α controls the extent to which sharing
is encouraged. It can be shown that the joint distribution
of {θ1, . . . ,θN} is invariant to permutation—this important
property is known as exchangeability. Further, the DP prior is

nonparametric and the number of distinct values M roughly
grows as O(log N).

An explicit characterization of G is given by the stick-
breaking construction [15]

θ
∗

m ∼ G0, m = 1, . . . ,∞, (5a)

vi ∼ Beta(1, α), i = 1, . . . ,∞, (5b)

pm = vm

m−1∏
i=1

(1 − vi), m = 1, . . . ,∞, (5c)

G(θ) =

∞∑
m=1

pm δ(θ, θ∗

m), (5d)

which shows that G is discrete and places its probability mass
on a countably infinite subset of the sample space.

The DP can be used as a nonparametric prior in a hierar-
chical Bayesian model

G ∼ DP (α, G0), (6a)

θn|G ∼ G, n = 1, . . . , N, (6b)

yn|θn ∼ f(yn|θn), n = 1, . . . , N. (6c)

In this specification, each variable θn forms the (unobserved)
parameter of a probability distribution f(yn|θn) from which
the data point yn is generated. Since the parameters are
drawn from G and take on coincident values, the data clusters
according to those values. In view of the stick-breaking
construction (5), (6) can be rewritten as

θ
∗

m ∼ G0, m = 1, . . . ,∞, (7a)

vi ∼ Beta(1, α), i = 1, . . . ,∞, (7b)

pm = vm

m−1∏
i=1

(1 − vi), m = 1, . . . ,∞, (7c)

zn|p ∼ Mult(p), n = 1, . . . , N, (7d)

yn|zn ∼ f(yn|θ
∗

zn
), n = 1, . . . , N, (7e)

which is equivalent to an infinite mixture model termed the
Dirichlet process mixture model:

p(y|p,Θ∗) =

∞∑
m=1

pm f(y|θ∗

m). (8)

The DP construction above can be truncated to K terms
by setting vK = 1. This truncated Dirichlet process (TDP)
DPK(α, G0) closely approximates the original Dirichlet pro-
cess DP (α, G0) when K is large enough relative to N . In
particular, it can be shown than the marginal density q(Y)
obeys

‖qK − q∞‖1 ≈ 4N exp(−(K − 1)/α), (9)

which provides a criterion for selecting the appropriate trun-
cation limit K .

B. Learning and Inference via Markov Chain Monte Carlo

The goal of Bayesian inference is to find the posterior
distribution over the parameters of interest given the observed
data. Markov Chain Monte Carlo (MCMC) methods [4] con-
struct a Markov chain on the parameters, for which the target
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(stationary) distribution is the posterior conditioned on the
data. In the Gibbs sampler [4], the Markov chain is obtained by
iteratively sampling each random variable conditioned on the
data and the previously sampled values of the other variables.
Samples are then collected from the converged Markov chain
and used to construct an empirical estimate of the posterior
distribution over the parameters. This estimate can be used to
approximate various posterior expectations of interest.

A powerful MCMC approach for learning DP mixture mod-
els is provided by the blocked Gibbs sampling algorithm [8].
In this method, blocks of parameters of a TDP are updated to
summarize the posterior distribution p(p,Θ∗, z|Y) directly.
Specifically, samples are iteratively drawn from the following
conditional distributions [8]:

θ
∗

m ∼ p(θ∗

m|z,Y), m = 1, . . . , K, (10a)

zn ∼ p(zn|Θ
∗,p,Y), n = 1, . . . , N, (10b)

pm ∼ p(pm|z), m = 1, . . . , K. (10c)

The predictive distribution is then approximated as

p(yN+1|Y, α, G0) =
1

R

R∑
r=1

[
K∑

m=1

p(r)
m f(yN+1|θ

∗(r)
m )

]
,

where R is the number of collected samples.

III. ADAPTIVE LEARNING BASED ONLINE SHM

We now discuss the adaptive learning based method for
online SHM.

A. Time-Frequency Feature Extraction

The objective of feature extraction is to condense, with
minimum loss, the information contained in measured data
into a form suitable for further analysis and processing.
In the present work, features are extracted from measured
piezoelectric transducer (PZT) sensor signals based on joint
time-frequency (TF) analysis [16], which is known to be
well-suited for capturing the dispersive nature of damage
wave physics [17]. Furthermore, since we are concerned with
statistical changes in the measured signals, the features are
defined so as to isolate transient effects.

Feature extraction is performed in a two-step process. In
the first step, the matching pursuit decomposition (MPD) al-
gorithm is used to construct cross-term free TF representations
(MPD-TFRs) for the signals [18]. For a signal s(t) ∈ L2(R),
the L-term MPD representation sL(t), computed iteratively, is
of the form

s(t) ≈ sL(t) =

L−1∑
l=0

αl gγl
(t), (11)

where αl are the expansion coefficients and gγl
(t) are basis

functions selected from a dictionary D. In this work, the
MPD uses a dictionary of highly localized Gaussian functions
that are time-frequency shifted and scaled versions of a basic
Gaussian atom g(t) = Ce−t2/2. The Gaussian functions
have optimal TF resolution properties and therefore afford

representations which are compact yet accurate. The cross-
term free MPD-TFR of s(t) is given by [18]

Es(t, f) =

L−1∑
l=0

|αl|
2 WDgγl

(t, f) , (12)

where WDgγl
(t, f) is the Wigner distribution TFR of the

Gaussian function gγl
(t) [16].

In the second step of the feature extraction process,
correlation-based distance features are computed between the
test signals’ MPD-TFRs and reference MPD-TFRs (defined
using the DP mixture and physics-based information from the
previous time period) as

ys =

∫∫
Es(t, f) log

Es(t, f)

Eref(t, f)
dt df. (13)

This correlation-based distance can be interpreted as the
Kullback-Leibler (KL) divergence measure [6] between TF
probability distributions of s(t) and the reference signal,
with the MPD-TFRs acting as probability distributions. The
computation of the integral in (13) is carried out using Monte-
Carlo integration.

B. Data Model based on Dirichlet Process Gaussian Mixtures

In this work, DP mixture models are used to provide a
framework for modeling structural data of varying statistical
structure. Specifically, damage-related features extracted from
periodically buffered structural data are modeled using a DP
Gaussian mixture model of the form

p(y) =
M∑

m=1

pm f(y|θ∗

m), (14)

where y denotes the extracted feature vector, M is the number
of mixture components, pm are mixture proportions, f(·) is a
Gaussian probability distribution that matches the properties
of all possible damage classes in the structure being tested,
and θ

∗

m = (μ∗

m, σ2∗
m ) is the parameter vector of mean μ∗

m and
variance σ2∗

m of this distribution.
The DP model parameters, i.e., the mixture proportions and

means and variances of the Gaussian density functions, are
estimated using the blocked Gibbs sampling algorithm [8]
in (10). In particular, a Normal-Gamma prior is used for
the base distribution G0, which is conjugate to the Gaussian
likelihood f(·) with unknown mean and variance [4]. This
property enables convenient iterative sampling from the pos-
terior p(θ∗

m|z,Y) in (10).
The relationship between the change in unknown damage

Δxk = xk − xk−1, at time step k, and the change in
the number of identified components ΔMk = Mk − Mk−1

and environmental conditions φk is quantified by defining
a probabilistic model p(ΔMk|Δxk, φk). Based on empirical
experience, a negative binomial form is imposed on this
distribution. Computations involving large arguments for the
negative binomial distribution are carried out stably by making
use of Stirling’s approximation [19].
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C. Physics-based Damage Evolution Model

The evolution of the unknown damage (crack length xk at
fatigue cycle k) in the CT sample is described by making use
of a progressive fatigue crack growth model [5], [20] based on
fracture mechanics. In its modified form, the model for fatigue
crack growth in a Aluminum alloy 2024-T3 CT sample under
variable-amplitude loading is given by

xk = xk−1 + χk C(ΔKeff
k )m, (15)

where C and m are material-dependent constants, ΔKeff is the
effective stress intensity range which depends on the sample
geometry and load, input maximum and minimum stress Smax

and Smin, and crack opening stress So [5], and χk is a log-
normal random process that is introduced to compensate for
the state modeling errors [20]. The mean and variance of the
χk are chosen for agreement between the model prediction
and experimentally observed crack length values.

Equation (15) can be rewritten as

xk = xk−1 + χk G(xk−1, φk), (16)

where G is a nonlinear function and the variable amplitude
loading plays the role of environmental conditions φk. The
damage evolution model above results in the conditional
distribution p(Δxk|xk−1, φk) assuming a log-normal form.

D. Bayesian Filtering Formulation

With the data and damage evolution models
p(ΔMk|Δxk, φk) and p(Δxk|xk−1, φk) defined, the damage
state estimation problem can be stated formally as follows:
Given the adaptively learned Mk = {ΔM1, . . . ,ΔMk} and
the environmental conditions Φk = {φ1, . . . , φk} up to time
k, we wish to estimate the unknown damage state xk at time
k.

The Bayesian filtering approach iteratively computes the
damage state estimate x̂k as the mean of the posterior dis-
tribution p(xk|Mk, Φk) for k = 1, 2, . . . as

p(Δxk|Mk−1, Φk) =

∫
p(Δxk|xk−1, φk) (17a)

·p(xk−1|Mk−1, Φk−1) dxk−1,

p(Δxk|Mk, Φk) ∝ p(ΔMk|Δxk, φk) p(Δxk|Mk−1, Φk),

p(xk|Mk, Φk) ≈ p(Δxk + x̂k−1|Mk, Φk), (17b)

x̂k = E[xk|Mk, Φk]. (17c)

Note the approximation used in (17b) for computing the
posterior distribution over the damage state xk from the
distribution over the change in damage Δxk. Also, the initial
state distribution p(x0|M0, Φ0) ≡ p(x0) is assumed known.

For simplicity, in this work we discretize the damage state
variable xk to a finite alphabet. The integral at each time-step
in (17a) then reduces to a finite sum, and the implementation
of the filter becomes straightforward.

Fig. 1 shows the block diagram of the adaptive learning
based damage classification algorithm.

�

Fig. 1. Block diagram of the adaptive learning based damage classification
algorithm.

IV. RESULTS

We now demonstrate the adaptive learning technique for
the classification of progressive fatigue crack damage in a
Aluminum 2024 CT sample of width 25.4 mm subjected to
variable-amplitude loading. A surface mounted PZT actuator
and sensor were used to collect signals in response to a 70
kHz burst input applied at various fatigue cycles up to 50 kilo-
cycles. More details of the experiment and data collection can
be found in [21].

The signals were first preprocessed using low-pass filtering,
downsampling, normalization, and mean-removal. MPD was
then carried out to L = 10 terms with a TF dictionary
consisting of about 8 million Gaussian atoms. In the DP
Gaussian mixture modeling, the innovation parameter was set
to α = 1.5 and the DP truncation limit was chosen as K = 10.
The number of blocked Gibbs sampling iterations performed
were R = 100, both for the burn-in and burn-out phases. We
utilized the convergence diagnostics described in [22] to assess
the convergence of the Gibbs sampling algorithm.

Fig. 2(a) shows an example of the number of components
identified in the data using the DP mixture modeling approach.
Fig. 2(b) shows the corresponding learned DP Gaussian mix-
ture model likelihood function. It can be seen from the plots
that two components are found to be predominant in the data
at this stage. Fig. 2(c) demonstrates the overall progress of the
adaptive learning based damage classification method. We see
that the estimated crack length values are very close to the
actual crack in the sample measured using scanning electron
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microscopy. The adaptive learning method accurately identifies
the crack length in the CT sample under variable loading
conditions.
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Fig. 2. Adaptive learning based damage classification results.

V. CONCLUSION

In this paper, we have presented an adaptive learning based
damage classification methodology in which Dirichlet process
mixture models are used to self-adapt to structure within the
data. The method combines the adaptive measurement model
with available physics-based damage evolution models using

a Bayesian filter to estimate damage accurately. Results from
applying the proposed method to the detection of progressive
fatigue damage in a CT sample under variable-amplitude
loading demonstrate good damage classification performance.
More tests are underway to ascertain the performance of
the algorithm under other types of variability. Also under
investigation is the use of active data selection techniques to
further improve the damage classification performance.
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