
















using MCMC methods (Gilks et al., 1996), in which a
Markov chain is constructed in order to generate sam-
ples from the pdf of interest. In particular, the collected
MCMC samples provide an empirical estimate of the
posterior pdf over the parameters, that can be used to
approximate various posterior expectations of interest.
The MCMC method of Gibbs sampling (Gilks et al.,
1996) realizes the Markov chain by iteratively sampling
each random variable conditioned on the data and the
previously sampled values of all other variables, and is
suitable for problems where it is easy to draw from the
relevant conditional densities.

An efficient blocked Gibbs sampling method for
inference in DP mixture models is described in
Ishwaran and James (2001). In the blocked Gibbs sam-
pler of Ishwaran and James (2001), parameters of the
TDP are updated in blocks to generate an empirical
estimate of the posterior pdf P(Q�, c, pjY) through its
samples. Specifically, samples are iteratively drawn
from the conditional pdfs (Ishwaran and James, 2001)

u�(l)m ; P(u�mjc(l�1),Y), m= 1, . . . ,K ð26aÞ

c(l)n ; P(cnjQ�(l), p(l�1),Y), n= 1, . . . , T ð26bÞ

p(l)
m ; P(pmjc(l)), m= 1, . . . ,K ð26cÞ

where l= 1, 2, . . . denotes the Gibbs iteration number
in the Markov chain:

fQ�(1), c(1), p(1)g ! fQ�(2), c(2), p(2)g ! . . . . . .!
fQ�(l), c(l), p(l)g ! . . .

ð27Þ

The conditional pdfs in (26) are given by (Ishwaran and
James, 2001)

P(u�mjc,Y) } G0(u
�
m)

Y
n: cn =m

f (ynju�m), m= 1, . . . ,K

ð28aÞ

P(cnjQ�, p,Y) }
XK

m= 1

pm f (ynju�m)
� �

dcn,m, n= 1, . . . , T

ð28bÞ

pmjc= v�m
Ym�1

k = 1

(1� v�k), m= 1, . . . ,K ð28cÞ

where v�m;Beta 1+Nm, i+
PK

j=m+ 1 Nj

 �
with Nm

denoting the number of cn values equal to m. Note that
the update step for the posterior over u�m above can be
performed very efficiently if the base distribution G0 is
selected to be conjugate to the likelihood term f ( � ju�m).
Finally, the predictive distribution is approximated as

P(yT + 1jY, i,G0)=
1

L

XL

l = 1

XK

m= 1

p(l)
m f (yT + 1ju�(l)m )

" #
ð29Þ

where L is the number of Gibbs samples collected.

For the case of DP-GMM of scalar data y, the pdf
f (yju)[N (yjm,s2) is Gaussian with mean m and preci-
sion 1=s2:

P(yjp,m�, 1=s�)=
X‘

m= 1

pmN (yjm�m,s2�
m ) ð30Þ

In this paper, we utilize a Normal-Gamma form for the
base distribution G0:

G0(u) ¼D Normal-Gamma m,
1

s2

				um, ut, ua, ub

� �

=N m um,
s2

ut

				
� �

Gamma
1

s2

				ua, ub

� �
ð31Þ

where um, ut, ua, ub are hyperparameters. The Normal-
Gamma prior is conjugate to the scalar Gaussian likeli-
hood with unknown mean and precision, i.e. the
posterior pdf over the mean and precision is also
Normal-Gamma in form:

Normal-Gamma m,
1

s2

� 				~um, ~ut, ~ua, ~ub

�
}N (Yjm,s2 )

Normal-Gamma m,
1

s2

				um, ut, ua, ub

� �
ð32Þ

where Y= fy1, . . . , yTg is an observed dataset of size T

and ~um, ~ut, ~ua, ~ub are the posterior hyperparameters,
given by Fink, (1995).

~um =
utum + T�y

ut + T
ð33aÞ

~ut = ut + T ð33bÞ

~ua = ua +
T

2
ð33cÞ

~ub =
1

ub

+
Ts2

2
+

utT (�y� um)
2

2(ut + T )

� ��1

ð33dÞ

Here, �y and s2 are the sample mean and biased sample
variance of Y, respectively. The conjugacy property
reduces the Gibbs sampling update step for the poster-
ior over u�m = fm�m, 1=s2�

m g in (28a) to a simple update
of the Normal-Gamma hyperparameters. The blocked
Gibbs sampler for inference in DP-GMM of scalar data
is summarized in Algorithm 2.

We now give a simple example showing the use of
the blocked Gibbs sampling algorithm for DP-GMM
of a synthetic dataset of size T = 500 generated from a
M = 3 component scalar GMM with parameters
p= 0:15, 0:5, 0:35½ �, m�= �2, 4, 8½ �, and s2�= 0:05,½
0:1, 1�. The DP innovation parameter was chosen as
i= 1. The Normal-Gamma base distribution hyper-
parameters were um = 0, ut = 1, ua = 1, and ub = 1.
The truncation limit was set to K = 50. The Gibbs sam-
pler was initialized with parameters corresponding to
all data points assigned to a single cluster. Lb = 2000

Gibbs iterations were performed for burn-in, followed
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Algorithm 2 Blocked Gibbs sampling for 1-D DP-GMM.

Input: Dataset Y= fy1, . . . , yTg, DP innovation parameter i, Normal-Gamma hyperparameters um, ut, ua, ub, DP
truncation limit K.
Output: Samples fm�(l), 1=s2�(l), c(l), p(l)gL

l = 1 from the posterior pdf P(m�, 1=s2�, c, pjY).
Initialize Gibbs sampler state fm�(0), 1=s2�(0), c(0), p(0)g.
For iterations l= 1, . . . , L, perform the following steps:

(1) Update for fm�(l)m , 1=s2�(l)
m g;P(m�m, 1=s2�

m jc(l�1),Y), m= 1, . . . ,K:

Define Ym ¼D fyn : c(l�1)
n =mg and Tm = Ymj j, for m= 1, . . . ,K:

Compute, for m= 1, . . . ,K,

�ym =
1

Tm

X
n: c

(l�1)
n =m

yn, s2
m =

1

Tm

X
n: c

(l�1)
n =m

(yn � �ym)
2

~um,m =
utum + Tm�ym

ut + Tm

, ~ut,m = ut + Tm

~ua,m = ua +
Tm

2
, ~ub,m =

1

ub

+
Tms2

m

2
+

utTm(�ym � um)
2

2(ut + Tm)

� ��1

Draw :
1

s
2�(l)
m

;Gamma
 1

s2�
m

				~ua,m, ~ub,m

�
, m= 1, . . . ,K:

Then draw : m�(l)m ;N
 

m�m ~um,m,
s2�(l)

m

~ut,m

!					 , m= 1, . . . ,K:

(2) Update for c(l)n ;P(cnjm�(l), 1=s2�(l), p(l�1),Y), n= 1, . . . , T :

Define qm, n ¼D p(l�1)
m Nðynjm�(l)m ,s2�(l)

m Þ, for m= 1, . . . ,K, n= 1, . . . , T :

Normalize ~qm, n =
qm, nP

m0
qm0 , n

, m= 1, . . . ,K, n= 1, . . . , T :

Draw : c(l)n ;
PK

m= 1

~qm, n dcn,m, n= 1, . . . , T :

(3) Update for p(l)
m ;P(pmjc(l)), m= 1, . . . ,K:

Draw : v�m;Beta 1+Nm, i+
PK

j=m+ 1

Nj

 !
, m= 1, . . . ,K, where Nm ¼D jfn : c(l)n =mgj:

Then compute : p(l)
m = v�m

Qm�1

k = 1

(1� v�k), m= 1, . . . ,K:
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Figure 3. Example DP-GMM results for scalar synthetic data.

10 Journal of Intelligent Material Systems and Structures



by Ls = 1000 iterations for collecting samples. Figure 3
shows a comparison of the true and learned GMMs
and the estimated mixture weights. It can be seen that
the algorithm correctly identified the three clusters in
the data. The simulation took about 66 secs to run on a
2 GHz processor.

2.5 Bayesian filtering

The adaptive DP clustering results are next combined
with information from a physically based progressive
damage model in a state-space framework, and the dam-
age state is estimated using a Bayesian filter. Specifically,
the state-space framework has two components: (a) a
physically based progressive damage model that pro-
vides a stochastic description of the damage state evolu-
tion, accounting for the structure geometry, loading, and
environmental conditions, and (b) a measurement rela-
tionship based on the adaptive DP clustering which con-
nects changes in TF statistics of measured sensor signals
to changing damage and/or operating conditions. The
Bayesian filter integrates predictions from the progres-
sive damage model with data from adaptively learned
TF statistics of measured sensor signals and the mea-
surement relation to reliably estimate structural damage
states online under variable external conditions.

Let xk be the damage state (fatigue crack length) at
epoch (fatigue cycle) k, and fk and Mk the environmen-
tal or operating condition and the number of adaptively
identified DP clusters, respectively. The damage state
evolution model is Markov and specifies the condi-
tional pdf P(xk jxk�1,fk) of the damage state xk given
the damage state xk�1 at the previous epoch and the
current environmental condition fk . For crack damage
in the aluminum CT specimen under cyclic fatigue load-
ing, the damage evolution model can be obtained from
a progressive crack growth model based on fracture
mechanics (Yang and Manning, 1990, 1996; Ray and
Patankar, 2001), which is of the form:

xk = xk�1 + xkH(xk�1,fk) ð34Þ

Here H is a non-linear function that depends on mate-
rial properties, geometry, load, and xk is a log-normal
random variable. In particular, we use the crack growth
model derived in Ray and Patankar (2001) and impose
a discretized log-normal distribution (see Appendix A)
on xk . The change in damage Dxk = xk � xk�1 =
xkH(xk�1,fk) then has conditional pdf

P(Dxk jxk�1,fk)=Log-N (m1, k ,s1, k ,Dx) ð35Þ

with Dx a suitable discretization level, and forms the
state variable of the Bayesian filter. The distribution
parameters m1, k and s1, k are obtained using equation
(42), such that

E½Dxk jxk�1,fk �=E½xk �H(xk�1,fk) ð36aÞ

Var½Dxk jxk�1,fk �=Var½xk �H(xk�1,fk)
2 ð36bÞ

where E½�� denotes the expected value and Var½�� the
variance. The variable amplitude loading plays the role
of the changing external condition fk .

The measurement equation of the Bayesian filter is
formulated using the relationship between the change in
the identified DP clustering DMk =Mk �Mk�1, the
change in damage Dxk , and environmental condition fk ,
quantified with a negative binomial likelihood function:

L(Dxk jDMk ,fk)=P(DMk jDxk ,fk)

¼D Neg-Bin(m2, k ,s2, k),
ð37Þ

which is discrete, bi-parametric, and can be approxi-
mated to a finite support. Note that the negative bino-
mial distribution has been reparameterized here in
terms of its mean and standard deviation (see Appendix
B). The parameters m2, k and s2, k are estimated at each
epoch based on the change in DP clustering as

m2, k =E½p̂k � � E½p̂k�1� ð38aÞ

s2
2, k =Var½p̂k �+Var½p̂k�1� ð38bÞ

where p̂k =
1
L

PL
l= 1 p

(l) are the estimated DP-GMM
mixture weights at epoch k, and E½p̂k � and Var½p̂k � are
the mean and variance of this pmf, used to monitor the
change in clustering. Stirling’s approximation
(Abramowitz and Stegun, 1965) is utilized for stably
carrying out computations involving large arguments
for the negative binomial distribution.

The damage estimation problem is then to determine
the unknown damage state xk at epoch k, given the
adaptively learned Mk = fDM1, . . . ,DMkg and the
environmental conditions Fk = ff1, . . . ,fkg up to
epoch k, the state and measurement equations in (35)
and (37), and an initial damage state distribution P(x0).
Below is a modified Bayesian filter that computes the
damage state estimate x̂k as the mean of the posterior
pdf P(xk jMk ,Fk), which is updated iteratively for
k = 1, 2, . . . , as:

P(Dxk jMk�1,Fk)=

ð
P(Dxk jxk�1,fk)P(xk�1jMk�1,Fk�1)dxk�1

ð39aÞ
P(Dxk jMk ,Fk) } P(DMk jDxk ,fk) � P(Dxk jMk�1,Fk)

ð39bÞ
P(xk jMk ,Fk) ’ P(Dxk + x̂k�1jMk ,Fk) ð39cÞ

Here, the posterior pdf over the damage state xk is
computed approximately using the distribution over
the change in damage Dxk and the previous damage
state estimate x̂k�1. Algorithm 3 summarizes the steps
of the modified Bayesian filter for progressive damage
estimation. The damage state variable xk has been dis-
cretized to a finite alphabet, so that the integration at
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each epoch in (39) reduces to a finite sum and the filter
is efficiently implemented.

3 Estimation of fatigue crack damage in an
aluminum CT specimen under variable-
amplitude loading

We now discuss an application of the proposed adap-
tive learning method for fatigue crack damage estima-
tion in a metallic sample subjected to variable loading
conditions.

3.1 Experimental setup and data collection

The test sample considered is an aluminum 2024 T3
6.31 mm thick CT specimen shown in Figure 4. The
CT specimen was fabricated according to ASTM E647-
93, with a width of 25.4 mm from the center of the pin
hole to the edge of the specimen. The location of crack
initiation was predetermined by making an initial notch
of length 5 mm. The fatigue experiments were per-
formed on a Instron 1331 servohydraulic load frame
operating at 20 Hz. Real flight conditions were simu-
lated by programming a typical center-wing load

Algorithm 3 Modified Bayesian filter for progressive damage estimation.

Input: DP clustering results fp̂1, p̂2, . . .g, damage model parameters: E½xk �, Var½xk �, Dx, H( � ), environmental con-
ditions ff1,f2, . . .g.
Output: Damage state estimates x̂1, x̂2, . . .

Initialize damage state distribution P(x0).
For epochs k = 1, 2, . . ., perform the following steps:

(1) Predict the distribution over the change in damage Dxk at epoch k using the damage evolution model.
For j= 1, 2, . . ., compute:

m
j
1, k = log (E½xk �H(v

j
k�1,fk))� 1

2
log 1+ Var½xk �

E½xk �
2

 �
, s

j
1, k =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1+ Var½xk �

E½xk �
2

 �r

Then compute, for j0= 1, 2, . . .,

P(Dxk =w
j0

k jMk�1,Fk)=
P

j

1
2

erf
m

j

1, k
�log (j0�1)Dx

s
j

1, k

ffiffi
2
p

� �
� erf

m
j

1, k
�log j0Dx

s
j

1, k

ffiffi
2
p

� �� �
�P(xk�1 = v

j
k�1jMk�1,Fk�1)

(2) Update the distribution over Dxk based on the likelihood of the observed change in DP clustering DMk .
From the DP-GMM clustering results, calculate:

mp̂k
=

PK
m= 1

mp̂m, k , s2
p̂k
=

PK
m= 1

(m� mp̂k
)2 p̂m, k , m2, k =mp̂k

� mp̂k�1
, s2

2, k =s2
p̂k
+s2

p̂k�1

rk =
m2

2, k

s2
2, k
�m2, k

, qk = 1�
m2, k

s2
2, k

Then, for j0= 1, 2, . . ., compute:

P(Dxk =w
j0

k jMk ,Fk)=

G(j0+ rk )
G(j0+ 1) (qk)

j0 � P(Dxk =w
j0

k jMk�1,Fk)P
j0

G(j0+ rk )
G(j0+ 1) (qk)

j0 � P(Dxk =w
j0

k jMk�1,Fk)

(3) Compute the posterior pdf over the damage state xk at epoch k using the previous damage state estimate
x̂k�1.

For j= 1, 2, . . . , assign: P(xk = v
j
k jMk ,Fk)=P(Dxk =w

j
k jMk ,Fk), where w

j
k = v

j
k � x̂k�1:

(4) Compute damage state estimate x̂k at epoch k as the mean of the posterior pdf.

Calculate : x̂k ¼
D

E½xk jMk ,Fk �=
P

j

v
j
k P(xk = v

j
k jMk ,Fk):
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spectrum into the load frame digital controller, with an
envelope shown in Figure 5. About 45 kilocycles of the
variable-amplitude cyclic loading were applied to
induce fatigue crack damage in the CT sample. Data
was collected using two surface mounted piezoelectric
(PZT) sensors placed symmetrically on the sample as

shown in Figure 4, at several stages of the fatigue load-
ing cycles corresponding to various crack lengths. One
of the PZT sensors was used as the actuator, and the
other used as a receiver to measure the response signals
(see Figure 6 for an example). A Gaussian windowed
tone burst signal of center frequency 130 kHz was used
for excitation. Signals were collected in sets of 210
time-domain waveforms at 4452, 5123, 5720, 20480,
34451, and 45507 cycles of fatigue loading. Crack
lengths were measured using scanning electron micro-
scopy (SEM) in an FEI XL-30 operating at 15 kV
(Mohanty et al., 2007a) and recorded. Further details
of the experimental setup and data collection procedure
can be found in Mohanty et al. (2007a,b).

3.2 TF statistical processing and DP mixture
modeling

The signals were first preprocessed to remove any DC
offset, low-pass filtered to eliminate high frequency
noise, downsampled to 333 kHz, and normalized to
unit energy. N = 10 iterations of MPD were performed
on each signal, with a dictionary comprised of 8 million
Gaussian TF shifted and scaled atoms, and the corre-
sponding MPD-TFRs were computed (Section 2.1).
Figure 6 shows an example response signal for the 6.17
mm crack length (4452 fatigue cycles), and its MPD
representation and residual error. Figure 7 shows the
MPD-TFRs of two signals from different damage
states, measured at 4452 and 5123 fatigue cycles and
with measured crack lengths of 6.17 mm and 6.28 mm,
respectively. From the plots, we see marked difference
in the TF structure of the signals, which is attributed to
the change in mode content due to damage growth.

Next, TF statistical similarity features (Section 2.2)
are calculated between the current measured signal pdfs
and those from a reference set, that is optimized to
retain representative measurement sets for the damage
states using the uniform feature selection procedure as

Figure 4. Aluminum 2024 CT specimen used in the fatigue
testing experiments.
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Figure 5. Envelope of the variable-amplitude cyclic fatigue
loading cycles.
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Figure 6. Example response signal for crack length 6.17 mm and its MPD representation.
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described in Section 2.3. DP Gaussian mixture model
based adaptive clustering was then effected on these
features as discussed in Section 2.4, and the DP cluster-
ing parameters used subsequently for damage estima-
tion. The clustering realized by the DP Gaussian
mixture model is shown for a typical scenario in Figure
8. Here, the 1-D features are known to be from two
clusters. The base distribution G0 is Normal-Gamma
with hyperparameters um = 0, ut = 1, ua = 1, and
ub = 1. The DP innovation parameter was set to
i= 1:5 and a truncation limit of K = 10 was used.
From (25), this choice corresponds to a 1-norm mar-
ginal density error of about 0.099. Figure 9 shows a
plot of the error as a function of K and i. A larger
value of K would reduce the error, but at the cost of
increased computational complexity. A lower i would
similarly yield smaller error, but would also decrease
the odds of generating new groups within the given
data. For determining the DP model parameters, 100
blocked Gibbs sampling iterations were used for burn-
in and sample generation, respectively. From the plots
in Figure 8, we see that the GMM learned from the

data by the DP mixture modeling is fairly accurate,
with the two dominant components identified correctly.
The DP mixture learning phase at each epoch requires
only about 0.3 s on a 2.8 GHz processor.
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Figure 7. Example MPD-TFRs of two signals for different damage states.
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In the construction of the reference MPD-pdf
PSref (t, f ), T̂ = 10 out of T = 30 features were selected.
Figure 10 compares the performance of the adaptive
clustering applied to features from a single damage state
at a typical epoch, with and without the use of feature
selection. Figure 10(a) shows the 1-D features, the
adaptively learned DP mixture likelihood, and a ran-
dom selection of features for the reference set Sref

(Section 2.3). The resulting mixture weights at the fol-
lowing epoch are shown in Figure 10(b). Figure 10(c)
shows the features, the adaptively learned DP mixture
likelihood, and a uniform selection of features for the
reference set. The resulting mixture weights at the fol-
lowing epoch are shown in Figure 10(d). Since all the
features were from the same damage state, it is desirable
that a single cluster be identified; this occurs with the
use of feature selection. Similar results were observed at
other time epochs as well.

3.3 Damage estimation results

The Bayesian filter was used to optimally combine
information from the DP based adaptive feature clus-
tering with the physically driven damage growth model
for estimating the probability distribution of the crack
length as described in Section 2.5. At the loading cycles
where no sensor data was measured, the damage was

predicted solely using the physics based model (recall
that the sensor measurements were collected only at
4452, 5123, 5720, 20480, 34451, and 45507 cycles of
fatigue loading). The value of the applied variable load
was known for every cycle, and was used in the physics
based state equation.

Figure 11(a) shows the performance of the proposed
adaptive learning structural damage estimation method
in estimating the fatigue crack damage in the CT speci-
men subjected to variable-amplitude loading. It can be
seen that the crack length estimates are accurate, with
the average error on the order of 0.1 mm. Figure 11(b)
is provided to compare with the performance of the
particle filtering (PF) algorithm of Zhou et al. (2009a).
Observe that the adaptive learning approach performs
better in the vicinity of the cycles when the load ampli-
tude changes. This is expected because, unlike the PF
method that is based on a fixed model, the adaptive
learning algorithm utilizes a flexible model that can
change its complexity as needed.

4 Conclusion

This paper develops a novel adaptive learning progres-
sive damage estimation method for structural health
monitoring under variable conditions. The algorithm
achieves adaptation by making use of the flexibility
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Figure 10. Data selection for improved adaptive learning.
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offered by Bayesian nonparametric statistics, specifi-
cally, DP mixture modeling. The DP is utilized to adap-
tively learn a potentially unlimited number of mixture
components (latent clusters) within joint TF features
extracted from periodically measured sensor data, with
the DP mixture model parameters determined effi-
ciently using the MCMC technique of Gibbs sampling.
The clusters identified in the statistically changing dis-
persive wave phenomena are associated with structural
damage evolving under varying conditions. This adap-
tive information is then combined with a physically
based damage growth model in a state-space formula-
tion and the damage state estimates are computed
using a Bayesian filter. A data selection procedure is
also incorporated to maximize performance by actively
selecting the reference measurements used for monitor-
ing changes. When applied for the estimation of fatigue
crack damage in an aluminum CT specimen under vari-
able loading conditions, the proposed method showed
promising results with the crack length estimates
obtained accurate to within a few millimeters.

In this work, the DP mixture modeling employed
Gaussian likelihoods for analytical and computational
simplicity. However, other likelihood forms may be
more suitable depending on the characteristics of the data,
and can be utilized in the DP mixture modeling so long as
a conjugate prior is available that is easy to sample from
(Escobar and West, 1995; Ishwaran and James, 2001).
Regarding sampling, it should be noted that determining
convergence of the MCMC iterations used in the learning
of the DP mixture model parameters involves separate
analysis and calculations (Cowles and Carlin, 1996). Also,
the innovation parameter of the DP, which was fixed here
for simplicity, can be learned from the data (Escobar and
West, 1995). Finally, the DP based adaptive clustering
can be used to monitor statistical changes in data, but the
method cannot by itself provide information about the
physical meaning of the clusters. For that, prior knowl-
edge must be given in the form of models relating the

clustering in feature space to structural damage and exter-
nal conditions. For example, the state space framework
considered here relies on the availability of an accurate
stochastic physically based damage evolution model that
incorporates the effects of variable environmental and
operating conditions. Such models can be non-trivial to
obtain for complex structures and certain types of vari-
abilities. These issues are currently under investigation.
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Appendix A: Discretized log-normal
distribution

A log-normal random variable x;Log-N (mx,sx) has
pdf

P(xjmx,sx)=
1

xsx

ffiffiffiffiffiffi
2p
p e

�( logx�mx )
2

2s2
x , x.0 ð40Þ

with mean and variance given by

E½x�= emx +
1
2
s2

x ð41aÞ

Var½x�=(es2
x � 1)e2mx +s2

x ð41bÞ

Note that the parameters mx and sx can be expressed in
terms of a desired mean E½x� and variance Var½x� as

mx = log (E½x�)� 1

2
log 1+

Var½x�
E½x�2

 !
ð42aÞ

sx =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1+

Var½x�
E½x�2

 !vuut ð42bÞ

We define a discretized log-normal random variable
x;Log-N (mx,sx,Dx), with pmf

Pr (x = jjmx,sx,Dx) ¼D
ðjDx

( j�1)Dx

1

xsx

ffiffiffiffiffiffi
2p
p e

�( logx�mx )
2

2s2
x dx

=
1

2
erf

mx � log ( j� 1)Dx

sx

ffiffiffi
2
p

" #
� erf

mx � log jDx
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2
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for j= 1, 2, . . . , where erf½�� is the error function

erf½x�= 2ffiffiffiffi
p
p

ðx

0

e�t2

dt ð44Þ

A comparison of the log-normal and discretized log-
normal distributions is shown in Figure 12.

Appendix B: Reparameterized negative
binomial distribution

The negative binomial distribution is a discrete prob-
ability distribution defined over non-negative integers,
with pmf of �;Neg-Bin(r, q) given by

Pr (�= jjr, q)=
G( j+ r)

G( j+ 1)G(r)
(1� q)r qj ð45Þ

for j= 0, 1, . . . , with parameters r.0 and 0\q\1.
The mean and standard deviation of � are

m� =
rq

1� q
ð46aÞ

s� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rq

(1� q)2

r
ð46bÞ

with 0\m�\s2
�. It is convenient to reparameterize the

negative binomial distribution in terms of its mean and
standard deviation as Neg-Bin(m�,s�). For a desired
mean m� and standard deviation s�, the parameters r

and q in (45) can be computed by inverting (46):

r=
m2
�

s2
� � m�

ð47aÞ

q= 1� m�

s2
�

ð47bÞ

Figure 12. Comparison of log-normal and discretized log-
normal distributions, for E½x�= 1 and Var½x�= 1:
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