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ABSTRACT

This paper reports the development of an efficient low power,
low cost wireless network system for perimeter security that
tracks a point target moving through a network of sensors.
The system incorporates a sever-client topology with the cen-
tral processor performing the tracking using acoustic datagen-
erated by footsteps. Estimation of the target position is achie-
ved via a particle filtering algorithm used in conjunction with
a novel data processing and detection technique designed to
operate real-time on the remote sensors. Results are presented
from an application to a real-world tracking scenario, demon-
strating effective detection and tracking performance.

Index Terms— Berkley MICA2 motes, particle filter, time-
frequency representation, energy detector, tracker

1. INTRODUCTION

Owing to the increased need for the safety of private proper-
ties against intruders, perimeter monitoring has recentlygained
a new level of importance. There are various commercial
products for perimeter security available such as Aegis P.C.
(a product of GDI), Power fence, outdoor perimeter security
systems by Megal Security Systems Ltd. etc,. Until now,
the systems that have been used include electric field sensors
(EFS) [1] which detect intruders in a field of survaillence by
the change in the electric charge flow, infrared (IR) based se-
curity systems [2], video motion detectors using closed circuit
television (CCTV) [3], and more recently fiber optic sensors
(FOS) [4]. However, most of these systems face serious chal-
lenges [5] of large size, high power consumption, high cost
and high false alarm rate. For instance, systems like EFS have
high false alarm rates due to presence of wind and small ani-
mals, CCTVs are too expensive to be used in abundance, and
FOS may need underground installation which is non-trivial.

In this work, we develop a smart detection algorithm which
has a low false alarm probability and provides a reliable track-
ing system using the state-of-the-art particle filtering [6, 7, 8,
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9] method. This novel detection algorithm runs real-time lo-
cally on the mote [10, 11, 12] which is our choice of a sensor.
It is compact at the size of a matchbox (having all the sensors
needed for monitoring with a computing unit not bigger than
a thumbnail) and is powered for days together by a pair of
AA batteries. Figure 1 shows a schematic of the tracking sce-

Fig. 1. Target tracking scenario

nario. A target moves along the dotted red line through a grid
of regularly placed motes. The motes detect and relay the in-
formation regarding the target to the base station as depicted
by gray dotted arrows. The base station is also a mote that is
hard wired to a computer; we refer to this setup as thebase
henceforth. The target is tracked using the particle filter algo-
rithm running on the commuter at the base.

The remainder of this paper is organized as follows. In
Section 2, we start by providing the necessary background on
the motes and introduce the particle filter algorithm. Section 3
describes the experimental setup for a real life scenario ofin-
terest. The technical details about how the data was processed
and the target detected and tracked are discussed in Section4.
Section 5 show the results obtained from our experiment and
comments on the performance of the system. We conclude in
Section 6 with a short discussion about the future prospects
of this technology.



Speed 4 MHz
Flash 128K bytes

SRAM 4K bytes
EEPROM 4 K bytes

Serial Comms UART
Processor current 5.5 mA active
Radio Frequency 916 MHz

Rated operating voltage 3V
Min. operating voltage 2.4V

A/D 10 bit, 8 channel
word length 8 bits

Table 1. MICA2 specifications [10]

2. BACKGROUND

2.1. The motes

Fig. 2. Motes

Berkeley motes, manufactured by Crossbow Technologies
Inc. are sensing units characterized by small size (4x2x1 in),
low power and cost. Each mote has a processor, a radio, in-
terfacing and data converting modules and other associated
hardware on which a sensor board or any other peripheral can
be mounted. The type of sensor board used in this experiment
has a collection of sensors among which the microphone was
used for acoustic sensing. Some basic specifications of the
MICA2 [10] motes used in this experiment are summarized
in Table 2.1.

The firmware was written in NesC [13], compiled on Tiny
OS [13] platform and uploaded through a serial port of the
computer using the base. Figure 2 demonstrates the config-
uration of the base station that was interfaced to the com-
puter. The other mote is the sensor mote. Sensor data was
collected, processed and transmitted over the radio to the base
station which in turn could relay the information to the com-
puter. These motes were programmed such that they could be
turned on/off, and certain programmable parameters could be
adjusted remotely [13] without having them reprogrammed.

2.2. Particle filter

Particle filtering is a sequential Monte Carlo method for es-
timating the state of a dynamic system using a sequence of
noisy measurements. It is an approximation to the Kalman
filter that is needed when the state equations are non-linear
or the noise is non-Gaussian. The key idea is to estimate a
sequence of unknown parameters,xk for k = 0, 1, 2, 3, . . .,
based only on the observed datazk. The probability density
function at each time instant is represented by point massesor
particles [7]. The algorithm has been extensively employed
recently in various applications such as sensing and target
tracking, computer vision, medical prognosis, communica-
tions, model diagnostics, navigation and neural network train-
ing [14, 15, 16, 17]. Literature provides instances where these
methods lead to results with very high accuracy [9]. Also,
from a Bayesian perspective, these methods allow one to com-
pute the posterior probability distributions of interest on-line.

Consider a filtering problem for estimating the state of
an evolving unknown vector at discrete time instantk + 1,
based on available information that includes a set of noisy
measurements from time1 to k, given byz1, ..., zk.

The state and measurement equations are given by

xk = f(xk−1, vk−1) (1)

zk = h(xk, wk) (2)

wherevk andwk are uncorrelated noise vectors of known dis-
tributions, andf(. . .) and h(. . .) are known, possibly non-
linear functions.

We consider a set of samples (particles)xi
k, ∀i = 1, ...., N

with associated weightswi
k normalized such that1N Σiw

i
k =

1. The particles are sampled from an importance distribution
given by,q(xi

k|xi
k−1

, zk), and the weights are,

wi
k ≈ wi

k

p(zk|xi
k)p(xi

k|xi
k−1

)

q(xi
k|xk−1, zk)

(3)

The posterior density can be approximated by [6]

p(xk|zk) ≈
N

∑

i=1

wi
kδ(xk − xi

k) (4)

In our application, a constant velocity model is assumed
for the state equation and the energy measurements from the
motes are modeled for the measurement equation which will
be discussed in Section 4.3

3. EXPERIMENTAL SETUP

The block diagram in Figure 3 shows the basic operational
software and hardware modules of a wireless sensor as used
in the application described in this paper.

Motes can be programmed to work as a transmitter or a re-
ceiver. The transmitter mote is described in Figure 3(a). The



(a) Functional block diagram of the motes.

(b) Functional block diagram of the base.

Fig. 3. Schematic block diagram of functional units.

acoustic signal and the noise transduced from the microphone
were digitized into 1 byte of information using an analog to
digital converter (A/D). This byte was queued in the data win-
dow and filtered through a high pass filter (HPF) as described
in Section 4.1. Features were extracted from successive fil-
tered windows sliding over one sample at a time and were
collectively used by the detector block to detect the presence
of a footstep in a stream of data. The feature extraction and
detection blocks are discussed in Section 4.2. Upon detection,
the information was transmitted to the base station.

A functional block diagram of the base is demonstrated in
Figure 3(b). The base station was a mote programmed to re-
ceive the information sent by other motes and relay the same
to the computer. A parallel port was chosen to communicate
the information to the computer where particle filter was exe-
cuted to track the movements of the target in a field of wireless
sensors.

4. DATA PROCESSING, DETECTION AND
TRACKING

4.1. Digital data processing

The byte of information acquired from the A/D was queued
in a buffer of pre-defined window lengthN . This buffer array
was the window of analysis. As depicted in the block dia-
gram in Figure 3(a), the incoming data sample was accom-
modated into the buffer by shifting all the previous samples
and discarding the oldest one. Since the order of the samples
in the buffer did not matter, the implementation of a circu-
lar buffer reduced the number of move operations fromN to
zero. The oldest sample in the sequence was replaced by the
most recent one. The overhead of running one counter, to
keep a track of which was the oldest sample in the sequence
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Fig. 4. Footstep data from walking in boots on concrete at 2
feet from sensor

was negligible compared toN moveoperations. Digital data
processing mainly depends on the acoustic signature of a foot-
step that is a function of the ground, the footwear, pace and
the style of walking. For our analysis, we have chosen the
sound made by boots on a concrete ground as shown in Fig-
ures 4 and 5. More examples of footstep data can be obtained
from [18]. Figure 4(b) is a spectogram time-frequency repre-

1 2 3 4 5 6

x 10
4

−50

0

50

Samples

A
m

pl
itu

de

(a) Time series after filtering

SamplesN
or

m
al

is
ed

 F
re

qu
en

cy

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

100

200

300

400

(b) TFR after filtering

Fig. 5. Filtered footstep data from walking in boots on con-
crete at 2 feet from sensor

sentation (TFR) [19, 20] of footsteps, and it demonstrates the
fact that footstep data is a high frequency information at the
given nyquist range. The low frequency component is mainly
noise due to speech, wind and humming of electronics. The
TFR of the filtered signal is shown in Figure 5(b). Comparing
the time series before and after filtering in Figures 4(a) and
5(a), we can observe that the noise in the signal got attenuated
rendering more prominent peaks corresponding to the occur-
rence of footsteps. However, speech with consonants like ’t’



and ’d’ which has footstep like signature posed a challenge.
The finite impulse response (FIR) high pass filter coeffi-

cients had to be 8-bit integers and were designed as in Equa-
tion (5) in order to be implemented on the motes.

h = {1,−7, 21,−35, 35,−21, 7,−1}/27 (5)

The magnitudes ofh form the 8th level of Pascal’s trian-
gle [21] and the scaling could be implemented using a right
shift operation.

4.2. Footstep energy detector

The energy detector incorporated an energy detection algo-
rithm with a sophisticated feature extraction technique tomake
a detection. It is described in the algorithm as follows.

1. The window energy was calculated asE =
∑N−1

k=0
|s[k]|2

wheres[k] is the filtered sample at timek and was com-
pared with a set thresholdγ.

2. A count (C) of the number of successive samples for
which E > γ was kept. This gave an idea of the time
duration of high energy signal recorded.

3. A footstep data was experimentally determined to have
a lower bound (Bl = 200) and an upper limit (Bu =
500) samples.

4. If C < Bl and E < γ, C was initialized; this was
interpreted as high amplitude measurement noise.

5. If C > Bu andE > γ, C was initialized whenγ < E
was true; this was interpreted as high amplitude ambi-
ent noise, probably speech or wind.

6. If Bl ≤ C ≤ Bu andE < γ for at least 500 successive
samples, then it was considered as a valid footstep and
C is reset.

7. If E < γ is true for a duration less than 500 samples, it
was considered a part of the same footstep signal (prob-
ably as echo) and was counted as one footstep and not
two successive footsteps separated by a very short time.
This kind of walking pattern was observed with some
men wearing boots and women wearing high heels on
a hard ground like concrete.

The parametersγ, Bu, Bl and sensor oriented firmware
parameters like mic gain can be varied in the program to suit
the conditions where the hardware is deployed. These mea-
sures were taken to minimize the false alarm at the cost of
a considererable amount of missed detections. Varying the
mentioned parameters would affect the performance of the
detector.

The detection and feature extraction algorithm has been
summarised using data from boots at a distance of 4 feet from
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Fig. 6. Energy levels of footstep data at each time window

the sensor in Figure 6. The outer plot shows the energy as
the window shifted over the data samples. The inner plot is
the zoomed in version of the entire plot. In the bounds of
the inner plot, 3 footsteps were detected and the speech signal
occurring around sample number1x104 was omitted. The
horizontal solid line shows the threshold levelγ set for this
simulation. Increasingγ would cause the footsteps with low
energy to be missed. Altering of|Bu ∼ Bl| would result in
detecting the speech signal as a valid footstep and missing
most of the footsteps.

Note that 32-bit time stamped energy values were relayed
to the base station along with identification information of
every mote that detected a footstep. At a given time instance,
from the information received the computer could localize a
target in the two-dimensional cartesian system. This infor-
mation was used by the particle filter tracker described in the
next section to predict and track the moving target.

4.3. Particle filter tracker

An eight bit particle filter tracker was implemented and the
performance was evaluated via simulation. The problem in-
volved estimating position(x, y) at timek using the state in-
formation atk−1 and all the observation information till time
k.

The state vector consisting of positions(x, y) and veloci-
ties(ẋk, ẏk) is given by,
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where∆t is the difference between two consecutive time steps



and also represents the sampling period, and
√

q is a factor
used to control the intensity of the process noise. This con-
stant velocity model was assumed for the state transition. The
observation in our case was the acoustic energy of the footstep
data.

The measurement vector modeled by [22] is given by,

Energy=
S0

dn
+ b. (7)

where,S0 is the source energy at a distance of one meter,
andb is a bias related to noise in the measurements.d is the
distance between the sensor and the tracker at timek. The
non-linear relation between the measurement and the state
vectors is given by

zk =
S0

(
√

x2

k + y2

k)n
+ b +

√
Rwk (8)

whereR denotes the measurement noise covariance ma-
trix andwk is a Gaussian random noise variable of zero mean
and unit variance.

5. RESULTS
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Fig. 7. Detector performance

To characterize the detector performance, footstep data
was collected at distances varying from 2 feet to 20 feet in
steps of 2 feet from the sensor. Noise in the form of speech
or wind with different gain levels was synthetically added to
each set of filtered data. Probability of detection (Pd) and
probability of false alarm (Pfa) as a function of distance are
provided in Figure 7. Within a range of 14 feet,Pd is greater
than 90% andPfa is less than 20% for any level of speech/
wind. The detector fails to detect footsteps if simultaneous
speech is present, making the probability of detection lower

with increasing noise gain. Short duration speech is compa-
rable to the time-span of the footstep and resulted in false
alarms.
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Fig. 8. Tracking result

To demonstrate the tracking performance, the simulation
setup consisted of 36 motes placed in a 6x6 grid with 2 m
spacing. The sensors provide acoustic energy measurements
of the sound produced by the moving target. The simulated
energy values were received every second duration. 21 time
steps of a cosine target trajectory was tracked with 4000 par-
ticles. The root mean square error (RMSE) was computed for
the tracker over 100 Monte Carlo simulation runs. The track-
ing results are provided in Figure 8(a). The RMSE plot is
shown in Figure 8(b).

6. CONCLUSION

In this paper, we presented the algorithms for target detection
and tracking that are applicable to perimeter security systems.
This has several advantages. The low cost and low power con-
sumption and minimum installation requirements of motes
suit this application. In our application, the motes were placed
on a regular pre-defined grid but with a good self localization



algorithm they could be randomly scattered. Computation-
ally more intensive and sophisticated algorithms could be im-
plemented on the motes provided some improvements on the
hardware is incorporated. In addition to the deployed acous-
tic sensor, the motes can be equipped with other sensors like
seismic, infrared and still/motion cameras.

The current algorithm is not capability of detecting a foot-
step in the presence of simultaneous speech or wind noise.
This limitation can be circumvented by using better hardware.
The issue of scalability may be overcome by multi-hop data
transmission techniques and clustering of nodes. With the ad-
vances in high speed low power hardware architecture and
improved sensor technology coupled with sophisticated sta-
tistical signal processing algorithms these applicationsoffer
enhancements in operational efficiency for security systems.
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